Clinical applications of artificial intelligence: Living evidence
Living evidence tables provide high level summaries of key studies and evidence on a particular topic, and links to sources. They are reviewed regularly and updated as new evidence and information is published.
This page is part of the Artificial Intelligence series.
This table describes areas where artificial intelligence is being used for direct clinical care. This includes examples of established tools, pilot studies, or research projects near the stage of being ready for implementation trials.
To develop this living table:
- Systematic reviews on artificial intelligence published from 2021 to May 2023 were screened in PubMed.
- Since May 2023, a weekly PubMed search on artificial intelligence has been conducted to continually update the table.
- Articles are screened for those that describe established uses of AI in clinical care, pilot studies of implementation, or large research studies and/or systematic reviews which identify areas where AI has positive benefits and is close to implementation / trial stage.
- Grey literature sources are identified via Google or through publications and websites of well-known organisations with relevance to the Australian clinical context (e.g. World Health Organization, OECD, NICE, The King’s Fund, US Centers for Disease Control and Prevention, etc).
- Initiatives involving robots or robotic surgery without any other AI integrated, are excluded.
Content is grouped by patient journey stage.
Regular checks are conducted for new content and any updates are highlighted.
On this page:
Diagnosis and prognosis
AI application | Scientific evidence | Actual use in healthcare systems |
---|---|---|
Clinical risk prediction models
Tools that predict health outcomes either at present (diagnostic) or in the future (prognostic).1 These are mainly produced in the academic context and face several barriers to clinical implementation. Therefore, there are few examples currently rolled out.2 | Emerging positive evidence. These have been used for: Diagnostic tools Oncology
Cardiovascular
Acute illness
Neurology/Psychology
Other
Predicting disease progression Acute care
Neurology
Oncology
Chronic illness progression and survival
Infectious diseases
Prognostic factors
|
|
Early detection of illness via real-time data analysis |
| |
Image analysis
| Consistent positive evidence foridentifying and interpreting mammographic regions suspicious for cancer,81-88
Emerging positive evidence onimproved diagnosis and/or prognosis for: Abdominal / Gastrointestinal
Pulmonary/Chest
Head and neck
Ocular156
Radiology and medical imaging
Other
Mixed evidence on the effectiveness ofimage analysisas used for diagnosis, for example:
|
|
Curative care
AI application | Scientific evidence | Actual use in healthcare systems |
---|---|---|
Clinical prediction models
Tools that predict health outcomes either in the future, depending on a variety of patient and treatment parameters.1 | Emerging positive evidence.These have been used for:
|
|
AI powered image analysis Can be used for planning treatment. | Emerging positive evidence. These have been used for:
|
|
AI driven surgical monitoring and decision making | Emerging positive evidence for:
| |
AI assisted antimicrobial treatment decisions | Emerging positive evidence. This has been used for:
|
Supportive care
AI application | Scientific evidence | Actual use in healthcare systems |
---|---|---|
Chatbots - a computer program designed to have a text-based ‘conversation’ with a patient. | Emerging positive evidence when used for:
Mixed evidence on effectiveness when used for
Limited but negative evidence when usedfor:
|
|
Clinical prediction models for supportive patient care and managing chronic conditions. | Emerging positive evidence when used for early identification of at-risk patients.For example:
| |
AI-interpreted remote patient monitoring. | Limited but emerging positive evidence.This technology can be used for patients at home or for continuous monitoring of inpatients:241
|
|
AI-delivered self-guided interventions | Limited but emerging positive evidence. AI can deliver standardised interventions directly to patients without the need for direct clinician involvement.
| · |
Notes
^ denotes grey literature, conference proceeding or pre-peer review source.
References
- Binuya MAE, Engelhardt EG, Schats W, et al. Methodological guidance for the evaluation and updating of clinical prediction models: a systematic review. BMC Medical Research Methodology. 2022 2022/12/12;22(1):316. DOI: 10.1186/s12874-022-01801-8
- Sharma V, Davies A, Ainsworth J. Clinical risk prediction models: the canary in the coalmine for artificial intelligence in healthcare? BMJ Health & Care Informatics. 2021;28(1):e100421. DOI: 10.1136/bmjhci-2021-100421
- Tandon R, Agrawal S, Rathore NPS, et al. A systematic review on deep learning-based automated cancer diagnosis models. Journal of Cellular and Molecular Medicine. 2024 2024/03/01;28(6):e18144. DOI: https://doi.org/10.1111/jcmm.18144
- Nguyen HS, Ho DKN, Nguyen NN, et al. Predicting EGFR Mutation Status in Non-Small Cell Lung Cancer Using Artificial Intelligence: A Systematic Review and Meta-Analysis. Acad Radiol. 2024 Feb;31(2):660-83. DOI: 10.1016/j.acra.2023.03.040
- Tran T-O, Vo TH, Le NQK. Omics-based deep learning approaches for lung cancer decision-making and therapeutics development. Briefings in Functional Genomics. 2024;23(3):181-92. DOI: 10.1093/bfgp/elad031
- The Lancet Digital H. Digital transformation of ovarian cancer diagnosis and care. The Lancet Digital Health. 2024 2024/03/01/;6(3):e145. DOI: https://doi.org/10.1016/S2589-7500(24)00027-X
- Thompson N, Morley-Bunker A, McLauchlan J, et al. Use of artificial intelligence for the prediction of lymph node metastases in early-stage colorectal cancer: systematic review. BJS Open. 2024;8(2):zrae033. DOI: 10.1093/bjsopen/zrae033
- Park DK, Kim EJ, Im JP, et al. A prospective multicenter randomized controlled trial on artificial intelligence assisted colonoscopy for enhanced polyp detection. Scientific Reports. 2024 2024/10/26;14(1):25453. DOI: 10.1038/s41598-024-77079-1
- Patel H, Shah H, Patel G, et al. Hematologic cancer diagnosis and classification using machine and deep learning: State-of-the-art techniques and emerging research directives. Artificial Intelligence in Medicine. 2024 2024/06/01/;152:102883. DOI: https://doi.org/10.1016/j.artmed.2024.102883
- Ram M, Afrash MR, Moulaei K, et al. Application of artificial intelligence in chronic myeloid leukemia (CML) disease prediction and management: a scoping review. BMC Cancer. 2024 2024/08/20;24(1):1026. DOI: 10.1186/s12885-024-12764-y
- Mishra AK, Chong B, Arunachalam SP, et al. Machine Learning Models for Pancreatic Cancer Risk Prediction Using Electronic Health Record Data—A Systematic Review and Assessment. Official journal of the American College of Gastroenterology | ACG. 2024;119(8).
- Calderaro J, Žigutytė L, Truhn D, et al. Artificial intelligence in liver cancer — new tools for research and patient management. Nature Reviews Gastroenterology & Hepatology. 2024 2024/08/01;21(8):585-99. DOI: 10.1038/s41575-024-00919-y
- Wu L, Lai Q, Li S, et al. Artificial intelligence in predicting recurrence after first-line treatment of liver cancer: a systematic review and meta-analysis. BMC Medical Imaging. 2024 2024/10/07;24(1):263. DOI: 10.1186/s12880-024-01440-z
- Fu Y, Zhou J, Li J. Diagnostic performance of ultrasound-based artificial intelligence for predicting key molecular markers in breast cancer: A systematic review and meta-analysis. PLOS ONE. 2024;19(5):e0303669. DOI: 10.1371/journal.pone.0303669
- Chen J, Chen A, Yang S, et al. Accuracy of machine learning in preoperative identification of genetic mutation status in lung cancer: A systematic review and <em>meta</em>-analysis. Radiotherapy and Oncology. 2024;196. DOI: 10.1016/j.radonc.2024.110325
- Zadnorouzi M, Abtahi SMM. Artificial intelligence (AI) applications in improvement of IMRT and VMAT radiotherapy treatment planning processes: A systematic review. Radiography. 2024;30(6):1530-5. DOI: 10.1016/j.radi.2024.09.049
- Hays P. Artificial intelligence in cytopathological applications for cancer: a review of accuracy and analytic validity. European Journal of Medical Research. 2024 2024/11/19;29(1):553. DOI: 10.1186/s40001-024-02138-2
- Armoundas AA, Narayan SM, Arnett DK, et al. Use of Artificial Intelligence in Improving Outcomes in Heart Disease: A Scientific Statement From the American Heart Association. Circulation. 2024 2024/04/02;149(14):e1028-e50. DOI: 10.1161/CIR.0000000000001201
- Elias P, Jain SS, Poterucha T, et al. Artificial Intelligence for Cardiovascular Care—Part 1: Advances: JACC Review Topic of the Week. Journal of the American College of Cardiology. 2024 2024/06/18/;83(24):2472-86. DOI: https://doi.org/10.1016/j.jacc.2024.03.400
- Naderi H, Ramírez J, van Duijvenboden S, et al. Predicting left ventricular hypertrophy from the 12-lead electrocardiogram in the UK Biobank imaging study using machine learning. European Heart Journal - Digital Health. 2023;4(4):316-24. DOI: 10.1093/ehjdh/ztad037
- Huerta N, Rao SJ, Isath A, et al. The premise, promise, and perils of artificial intelligence in critical care cardiology. Progress in Cardiovascular Diseases. 2024 2024/09/01/;86:2-12. DOI: https://doi.org/10.1016/j.pcad.2024.06.006
- Gudigar A, Kadri NA, Raghavendra U, et al. Automatic identification of hypertension and assessment of its secondary effects using artificial intelligence: A systematic review (2013–2023). Computers in Biology and Medicine. 2024 2024/04/01/;172:108207. DOI: https://doi.org/10.1016/j.compbiomed.2024.108207
- Sutanto H. Transforming clinical cardiology through neural networks and deep learning: A guide for clinicians. Current Problems in Cardiology. 2024 2024/04/01/;49(4):102454. DOI: https://doi.org/10.1016/j.cpcardiol.2024.102454
- G S, Gopalakrishnan U, Parthinarupothi RK, et al. Deep learning supported echocardiogram analysis: A comprehensive review. Artificial Intelligence in Medicine. 2024 2024/05/01/;151:102866. DOI: https://doi.org/10.1016/j.artmed.2024.102866
- Petmezas G, Papageorgiou VE, Vassilikos V, et al. Recent advancements and applications of deep learning in heart failure: Α systematic review. Computers in Biology and Medicine. 2024 2024/06/01/;176:108557. DOI: https://doi.org/10.1016/j.compbiomed.2024.108557
- Siranart N, Deepan N, Techasatian W, et al. Diagnostic accuracy of artificial intelligence in detecting left ventricular hypertrophy by electrocardiograph: a systematic review and meta-analysis. Scientific Reports. 2024 2024/07/10;14(1):15882. DOI: 10.1038/s41598-024-66247-y
- Sau A, Pastika L, Sieliwonczyk E, et al. Artificial intelligence-enabled electrocardiogram for mortality and cardiovascular risk estimation: a model development and validation study. The Lancet Digital Health. 2024;6(11):e791-e802. DOI: 10.1016/S2589-7500(24)00172-9
- Issaiy M, Zarei D, Saghazadeh A. Artificial Intelligence and Acute Appendicitis: A Systematic Review of Diagnostic and Prognostic Models. World Journal of Emergency Surgery. 2023 2023/12/19;18(1):59. DOI: 10.1186/s13017-023-00527-2
- Puchades R, Tung-Chen Y, Salgueiro G, et al. Artificial intelligence for predicting pulmonary embolism: A review of machine learning approaches and performance evaluation. Thrombosis Research. 2024;234:9-11. DOI: 10.1016/j.thromres.2023.12.002
- Barbieri MA, Battini V, Sessa M. Artificial intelligence for the optimal management of community-acquired pneumonia. Current Opinion in Pulmonary Medicine. 2024;30(3).
- Glaser K, Marino L, Stubnya JD, et al. Machine learning in the prediction and detection of new-onset atrial fibrillation in ICU: a systematic review. Journal of Anesthesia. 2024 2024/06/01;38(3):301-8. DOI: 10.1007/s00540-024-03316-6
- Shen L, An J, Wang N, et al. Artificial intelligence and machine learning applications in urinary tract infections identification and prediction: a systematic review and meta-analysis. World Journal of Urology. 2024 2024/08/01;42(1):464. DOI: 10.1007/s00345-024-05145-4
- Technologies CJoH. RapidAI for Stroke Detection and AI Implementation Review. Canada2024 [cited 29 Nov 2024]. Available from: https://www.canjhealthtechnol.ca/index.php/cjht/article/view/OP0556
- Altham C, Zhang H, Pereira E. Machine learning for the detection and diagnosis of cognitive impairment in Parkinson’s Disease: A systematic review. PLOS ONE. 2024;19(5):e0303644. DOI: 10.1371/journal.pone.0303644
- Han K, Liu C, Friedman D. Artificial intelligence/machine learning for epilepsy and seizure diagnosis. Epilepsy & Behavior. 2024;155. DOI: 10.1016/j.yebeh.2024.109736
- Lucas A, Revell A, Davis KA. Artificial intelligence in epilepsy — applications and pathways to the clinic. Nature Reviews Neurology. 2024 2024/06/01;20(6):319-36. DOI: 10.1038/s41582-024-00965-9
- Caselles-Pina L, Quesada-López A, Sújar A, et al. A systematic review on the application of machine learning models in psychometric questionnaires for the diagnosis of attention deficit hyperactivity disorder. European Journal of Neuroscience. 2024 2024/08/01;60(3):4115-27. DOI: https://doi.org/10.1111/ejn.16288
- Velasquez VT, Chang J, Waddell A. The development of early warning scores or alerting systems for the prediction of adverse events in psychiatric patients: a scoping review. BMC Psychiatry. 2024 2024/10/28;24(1):742. DOI: 10.1186/s12888-024-06052-z
- Pucchio A, Krance S, Pur DR, et al. The role of artificial intelligence in analysis of biofluid markers for diagnosis and management of glaucoma: A systematic review. Eur J Ophthalmol. 2023 Sep;33(5):1816-33. DOI: 10.1177/11206721221140948
- Lapka M, Straňák Z. The Current State of Artificial Intelligence in Neuro-Ophthalmology. A Review. Cesk Slov Oftalmol. 2023 Winter;3(Ahead of Print):1001-12. DOI: 10.31348/2023/33
- Shiyam Sundar LK, Gutschmayer S, Maenle M, et al. Extracting value from total-body PET/CT image data - the emerging role of artificial intelligence. Cancer Imaging. 2024 2024/04/11;24(1):51. DOI: 10.1186/s40644-024-00684-w
- González-Castro A, Leirós-Rodríguez R, Prada-García C, et al. The Applications of Artificial Intelligence for Assessing Fall Risk: Systematic Review. J Med Internet Res. 2024;26:e54934. DOI: 10.2196/54934
- Barlow J, Sragi Z, Rivera-Rivera G, et al. The Use of Deep Learning Software in the Detection of Voice Disorders: A Systematic Review. Otolaryngology–Head and Neck Surgery. 2024 2024/06/01;170(6):1531-43. DOI: https://doi.org/10.1002/ohn.636
- Rimondi A, Gottlieb K, Despott EJ, et al. Can artificial intelligence replace endoscopists when assessing mucosal healing in ulcerative colitis? A systematic review and diagnostic test accuracy meta-analysis. Digestive and Liver Disease. 2024;56(7):1164-72. DOI: 10.1016/j.dld.2023.11.005
- Yi X, He Y, Gao S, et al. A review of the application of deep learning in obesity: From early prediction aid to advanced management assistance. Diabetes & Metabolic Syndrome: Clinical Research & Reviews. 2024 2024/04/01/;18(4):103000. DOI: https://doi.org/10.1016/j.dsx.2024.103000
- Chen M, Cai R, Zhang A, et al. The diagnostic value of artificial intelligence-assisted imaging for developmental dysplasia of the hip: a systematic review and meta-analysis. Journal of Orthopaedic Surgery and Research. 2024 2024/08/29;19(1):522. DOI: 10.1186/s13018-024-05003-4
- Tahernejad A, Sahebi A, Abadi ASS, et al. Application of artificial intelligence in triage in emergencies and disasters: a systematic review. BMC Public Health. 2024 2024/11/18;24(1):3203. DOI: 10.1186/s12889-024-20447-3
- van der Vegt AH, Campbell V, Mitchell I, et al. Systematic review and longitudinal analysis of implementing Artificial Intelligence to predict clinical deterioration in adult hospitals: what is known and what remains uncertain. Journal of the American Medical Informatics Association. 2024;31(2):509-24. DOI: 10.1093/jamia/ocad220
- Porto BM. Improving triage performance in emergency departments using machine learning and natural language processing: a systematic review. BMC Emergency Medicine. 2024 2024/11/18;24(1):219. DOI: 10.1186/s12873-024-01135-2
- Zhou Y, Mei S, Wang J, et al. Development and validation of a deep learning-based framework for automated lung CT segmentation and acute respiratory distress syndrome prediction: a multicenter cohort study. eClinicalMedicine. 2024;75. DOI: 10.1016/j.eclinm.2024.102772
- Kainth D, Prakash S, Sankar MJ. Diagnostic Performance of Machine Learning-based Models in Neonatal Sepsis: A Systematic Review. The Pediatric Infectious Disease Journal. 2024;43(9).
- Nikravangolsefid N, Reddy S, Truong HH, et al. Machine learning for predicting mortality in adult critically ill patients with Sepsis: A systematic review. Journal of Critical Care. 2024 2024/12/01/;84:154889. DOI: https://doi.org/10.1016/j.jcrc.2024.154889
- Kerr WT, McFarlane KN. Machine Learning and Artificial Intelligence Applications to Epilepsy: a Review for the Practicing Epileptologist. Current Neurology and Neuroscience Reports. 2023 2023/12/01;23(12):869-79. DOI: 10.1007/s11910-023-01318-7
- Beaulieu-Jones BK, Villamar MF, Scordis P, et al. Predicting seizure recurrence after an initial seizure-like episode from routine clinical notes using large language models: a retrospective cohort study. The Lancet Digital Health. 2023;5(12):e882-e94. DOI: 10.1016/S2589-7500(23)00179-6
- Yi F, Zhang Y, Yuan J, et al. Identifying underlying patterns in Alzheimer's disease trajectory: a deep learning approach and Mendelian randomization analysis. eClinicalMedicine. 2023;64. DOI: 10.1016/j.eclinm.2023.102247
- Santana LS, Diniz JBC, Rabelo NN, et al. Machine Learning Algorithms to Predict Delayed Cerebral Ischemia After Subarachnoid Hemorrhage: A Systematic Review and Meta-analysis. Neurocritical Care. 2024 2024/06/01;40(3):1171-81. DOI: 10.1007/s12028-023-01832-z
- Lv Q, Liu Y, Sun Y, et al. Insight into deep learning for glioma IDH medical image analysis: A systematic review. Medicine. 2024;103(7).
- Habibi MA, Naseri Alavi SA, Soltani Farsani A, et al. Predicting the Outcome and Survival of Patients with Spinal Cord Injury Using Machine Learning Algorithms: A Systematic Review. World Neurosurgery. 2024 2024/08/01/;188:150-60. DOI: https://doi.org/10.1016/j.wneu.2024.05.103
- Han H, Li R, Fu D, et al. Revolutionizing spinal interventions: a systematic review of artificial intelligence technology applications in contemporary surgery. BMC Surgery. 2024 2024/11/05;24(1):345. DOI: 10.1186/s12893-024-02646-2
- Kaur A, Mittal M, Bhatti JS, et al. A systematic literature review on the significance of deep learning and machine learning in predicting Alzheimer's disease. Artificial Intelligence in Medicine. 2024 2024/08/01/;154:102928. DOI: https://doi.org/10.1016/j.artmed.2024.102928
- Borchert RJ, Azevedo T, Badhwar A, et al. Artificial intelligence for diagnostic and prognostic neuroimaging in dementia: A systematic review. Alzheimer's & Dementia. 2023 2023/12/01;19(12):5885-904. DOI: https://doi.org/10.1002/alz.13412
- Moharrami M, Azimian Zavareh P, Watson E, et al. Prognosing post-treatment outcomes of head and neck cancer using structured data and machine learning: A systematic review. PLOS ONE. 2024;19(7):e0307531. DOI: 10.1371/journal.pone.0307531
- Chen Z, Yi G, Li X, et al. Predicting radiation pneumonitis in lung cancer using machine learning and multimodal features: a systematic review and meta-analysis of diagnostic accuracy. BMC Cancer. 2024 2024/11/05;24(1):1355. DOI: 10.1186/s12885-024-13098-5
- Wu S, Li X, Miao J, et al. Artificial intelligence for assisted HER2 immunohistochemistry evaluation of breast cancer: A systematic review and meta-analysis. Pathology - Research and Practice. 2024 2024/08/01/;260:155472. DOI: https://doi.org/10.1016/j.prp.2024.155472
- Dai L, Sheng B, Chen T, et al. A deep learning system for predicting time to progression of diabetic retinopathy. Nature Medicine. 2024 2024/01/04. DOI: 10.1038/s41591-023-02702-z
- McBane RD, Murphree DH, Liedl D, et al. Artificial Intelligence of Arterial Doppler Waveforms to Predict Major Adverse Outcomes Among Patients Evaluated for Peripheral Artery Disease. Journal of the American Heart Association. 2024 2024/02/06;13(3):e031880. DOI: 10.1161/JAHA.123.031880
- Wenzl FA, Fox KAA, Lüscher TF. Towards personalized cardiovascular care: Global Registry of Acute Coronary Events 3.0 score heralds artificial intelligence era. European Heart Journal. 2023;44(44):4615-6. DOI: 10.1093/eurheartj/ehad597
- Lei N, Zhang X, Wei M, et al. Machine learning algorithms’ accuracy in predicting kidney disease progression: a systematic review and meta-analysis. BMC Medical Informatics and Decision Making. 2022 2022/08/01;22(1):205. DOI: 10.1186/s12911-022-01951-1
- Li Y, Feng Y, He Q, et al. The predictive accuracy of machine learning for the risk of death in HIV patients: a systematic review and meta-analysis. BMC Infectious Diseases. 2024 2024/05/06;24(1):474. DOI: 10.1186/s12879-024-09368-z
- Alaimo L, Moazzam Z, Woldesenbet S, et al. Artificial intelligence to investigate predictors and prognostic impact of time to surgery in colon cancer. Journal of Surgical Oncology. 2023 2023/05/01;127(6):966-74. DOI: https://doi.org/10.1002/jso.27224
- Jiang X, Hoffmeister M, Brenner H, et al. End-to-end prognostication in colorectal cancer by deep learning: a retrospective, multicentre study. The Lancet Digital Health. 2024;6(1):e33-e43. DOI: 10.1016/S2589-7500(23)00208-X
- Kim J, Yang H-L, Kim SH, et al. Deep learning-based long-term risk evaluation of incident type 2 diabetes using electrocardiogram in a non-diabetic population: a retrospective, multicentre study. eClinicalMedicine. 2024;68. DOI: 10.1016/j.eclinm.2024.102445
- Hendry J. eHealth NSW is using AI to detect sepsis in hospital admissions. IT News; 2022 [cited 23 Oct 2023]. Available from: https://www.itnews.com.au/news/ehealth-nsw-is-using-ai-to-detect-sepsis-in-hospital-admissions-580419
- John W. Chatbots detect long covid by phone in a world first. Medical Republic; 2023 [cited 23 Oct 2023]. Available from: https://www.medicalrepublic.com.au/chatbots-detect-long-covid-by-phone-in-a-world-first/93428
- Rajpurkar P, Lungren MP. The Current and Future State of AI Interpretation of Medical Images. New England Journal of Medicine. 2023 2023/05/25;388(21):1981-90. DOI: 10.1056/NEJMra2301725
- Shafi S, Parwani AV. Artificial intelligence in diagnostic pathology. Diagnostic Pathology. 2023 2023/10/03;18(1):109. DOI: 10.1186/s13000-023-01375-z
- Lång K, Josefsson V, Larsson A-M, et al. Artificial intelligence-supported screen reading versus standard double reading in the Mammography Screening with Artificial Intelligence trial (MASAI): a clinical safety analysis of a randomised, controlled, non-inferiority, single-blinded, screening accuracy study. The Lancet Oncology. 2023;24(8):936-44. DOI: 10.1016/S1470-2045(23)00298-X
- Yoon JH, Strand F, Baltzer PAT, et al. Standalone AI for Breast Cancer Detection at Screening Digital Mammography and Digital Breast Tomosynthesis: A Systematic Review and Meta-Analysis. Radiology. 2023 2023/06/01;307(5):e222639. DOI: 10.1148/radiol.222639
- Dembrower K, Crippa A, Colón E, et al. Artificial intelligence for breast cancer detection in screening mammography in Sweden: a prospective, population-based, paired-reader, non-inferiority study. The Lancet Digital Health. DOI: 10.1016/S2589-7500(23)00153-X
- McKinney SM, Sieniek M, Godbole V, et al. International evaluation of an AI system for breast cancer screening. Nature. 2020 2020/01/01;577(7788):89-94. DOI: 10.1038/s41586-019-1799-6
- Ng AY, Oberije CJG, Ambrózay É, et al. Prospective implementation of AI-assisted screen reading to improve early detection of breast cancer. Nature Medicine. 2023 2023/11/16. DOI: 10.1038/s41591-023-02625-9
- Eriksson M, Román M, Gräwingholt A, et al. European validation of an image-derived AI-based short-term risk model for individualized breast cancer screening—a nested case-control study. The Lancet Regional Health – Europe. DOI: 10.1016/j.lanepe.2023.100798
- Amgad M, Hodge JM, Elsebaie MAT, et al. A population-level digital histologic biomarker for enhanced prognosis of invasive breast cancer. Nature Medicine. 2023 2023/11/27. DOI: 10.1038/s41591-023-02643-7
- Schopf CM, Ramwala OA, Lowry KP, et al. Artificial Intelligence-Driven Mammography-Based Future Breast Cancer Risk Prediction: A Systematic Review. Journal of the American College of Radiology. 2024;21(2):319-28. DOI: 10.1016/j.jacr.2023.10.018
- Fisches ZV, Ball M, Mukama T, et al. Strategies for integrating artificial intelligence into mammography screening programmes: a retrospective simulation analysis. The Lancet Digital Health. 2024;6(11):e803-e14. DOI: 10.1016/S2589-7500(24)00173-0
- Popa SL, Grad S, Chiarioni G, et al. Applications of Artificial Intelligence in the Automatic Diagnosis of Focal Liver Lesions: A Systematic Review. J Gastrointestin Liver Dis. 2023 Apr 1;32(1):77-85. DOI: 10.15403/jgld-4755
- Zhao Q, Lan Y, Yin X, et al. Image-based AI diagnostic performance for fatty liver: a systematic review and meta-analysis. BMC Medical Imaging. 2023 2023/12/11;23(1):208. DOI: 10.1186/s12880-023-01172-6
- Lu F, Meng Y, Song X, et al. Artificial Intelligence in Liver Diseases: Recent Advances. Advances in Therapy. 2024 2024/03/01;41(3):967-90. DOI: 10.1007/s12325-024-02781-5
- Pulaski H, Harrison SA, Mehta SS, et al. Clinical validation of an AI-based pathology tool for scoring of metabolic dysfunction-associated steatohepatitis. Nature Medicine. 2024 2024/11/04. DOI: 10.1038/s41591-024-03301-2
- Barua I, Vinsard DG, Jodal HC, et al. Artificial intelligence for polyp detection during colonoscopy: a systematic review and meta-analysis. Endoscopy. 2020 2020/09/29;53(03):277-84. DOI: 10.1055/a-1201-7165
- Hassan C, Spadaccini M, Iannone A, et al. Performance of artificial intelligence in colonoscopy for adenoma and polyp detection: a systematic review and meta-analysis. Gastrointestinal Endoscopy. 2021;93(1):77-85.e6. DOI: 10.1016/j.gie.2020.06.059
- Lou S, Du F, Song W, et al. Artificial intelligence for colorectal neoplasia detection during colonoscopy: a systematic review and meta-analysis of randomized clinical trials. eClinicalMedicine. 2023;66. DOI: 10.1016/j.eclinm.2023.102341
- Mehta A, Kumar H, Yazji K, et al. Effectiveness of artificial intelligence-assisted colonoscopy in early diagnosis of colorectal cancer: a systematic review. International Journal of Surgery. 2023;109(4).
- Li J, Lu J, Yan J, et al. Artificial intelligence can increase the detection rate of colorectal polyps and adenomas: a systematic review and meta-analysis. European Journal of Gastroenterology & Hepatology. 2021;33(8).
- Zhang H, Yang X, Tao Y, et al. Diagnostic accuracy of endocytoscopy via artificial intelligence in colorectal lesions: A systematic review and meta‑analysis. PLOS ONE. 2023;18(12):e0294930. DOI: 10.1371/journal.pone.0294930
- Wei MT, Fay S, Yung D, et al. Artificial Intelligence–Assisted Colonoscopy in Real-World Clinical Practice: A Systematic Review and Meta-Analysis. Clinical and Translational Gastroenterology. 2024;15(3).
- Pal P, Pooja K, Nabi Z, et al. Artificial intelligence in endoscopy related to inflammatory bowel disease: A systematic review. Indian Journal of Gastroenterology. 2024 2024/02/01;43(1):172-87. DOI: 10.1007/s12664-024-01531-3
- Iacucci M, Santacroce G, Zammarchi I, et al. Artificial intelligence and endo-histo-omics: new dimensions of precision endoscopy and histology in inflammatory bowel disease. The Lancet Gastroenterology & Hepatology. DOI: 10.1016/S2468-1253(24)00053-0
- Li N, Yang J, Li X, et al. Accuracy of artificial intelligence-assisted endoscopy in the diagnosis of gastric intestinal metaplasia: A systematic review and meta-analysis. PLOS ONE. 2024;19(5):e0303421. DOI: 10.1371/journal.pone.0303421
- Shen H, Jin Z, Chen Q, et al. Image-based artificial intelligence for the prediction of pathological complete response to neoadjuvant chemoradiotherapy in patients with rectal cancer: a systematic review and meta-analysis. Radiol Med. 2024 Apr;129(4):598-614. DOI: 10.1007/s11547-024-01796-w
- He J, Wang S-x, Liu P. Machine learning in predicting pathological complete response to neoadjuvant chemoradiotherapy in rectal cancer using MRI: a systematic review and meta-analysis. British Journal of Radiology. 2024;97(1159):1243-54. DOI: 10.1093/bjr/tqae098
- Rousta F, Esteki A, shalbaf A, et al. Application of artificial intelligence in pancreas endoscopic ultrasound imaging- A systematic review. Computer Methods and Programs in Biomedicine. 2024 2024/06/01/;250:108205. DOI: https://doi.org/10.1016/j.cmpb.2024.108205
- Leggett CL. Endoscopic screening for oesophageal cancer: empowering artificial intelligence with a high-quality examination. The Lancet Gastroenterology & Hepatology. 2023. DOI: 10.1016/S2468-1253(23)00377-1
- Fass O, Rogers BD, Gyawali CP. Artificial Intelligence Tools for Improving Manometric Diagnosis of Esophageal Dysmotility. Current Gastroenterology Reports. 2024 2024/04/01;26(4):115-23. DOI: 10.1007/s11894-024-00921-z
- Salehi MA, Harandi H, Mohammadi S, et al. Diagnostic Performance of Artificial Intelligence in Detection of Hepatocellular Carcinoma: A Meta-analysis. Journal of Imaging Informatics in Medicine. 2024 2024/08/01;37(4):1297-311. DOI: 10.1007/s10278-024-01058-1
- Zeng Q, Klein C, Caruso S, et al. Artificial intelligence-based pathology as a biomarker of sensitivity to atezolizumab–bevacizumab in patients with hepatocellular carcinoma: a multicentre retrospective study. The Lancet Oncology. DOI: 10.1016/S1470-2045(23)00468-0
- Cao K, Xia Y, Yao J, et al. Large-scale pancreatic cancer detection via non-contrast CT and deep learning. Nature Medicine. 2023 2023/11/20. DOI: 10.1038/s41591-023-02640-w
- Dhali A, Kipkorir V, Srichawla BS, et al. Artificial intelligence assisted endoscopic ultrasound for detection of pancreatic space-occupying lesion: a systematic review and meta-analysis. International Journal of Surgery. 2023;109(12).
- Girolami I, Pantanowitz L, Marletta S, et al. Artificial intelligence applications for pre-implantation kidney biopsy pathology practice: a systematic review. Journal of Nephrology. 2022 2022/09/01;35(7):1801-8. DOI: 10.1007/s40620-022-01327-8
- Cazzaniga G, Rossi M, Eccher A, et al. Time for a full digital approach in nephropathology: a systematic review of current artificial intelligence applications and future directions. Journal of Nephrology. 2023 2023/09/28. DOI: 10.1007/s40620-023-01775-w
- Altunhan A, Soyturk S, Guldibi F, et al. Artificial intelligence in urolithiasis: a systematic review of utilization and effectiveness. World Journal of Urology. 2024 2024/10/17;42(1):579. DOI: 10.1007/s00345-024-05268-8
- van Stiphout JA, Driessen J, Koetzier LR, et al. The effect of deep learning reconstruction on abdominal CT densitometry and image quality: a systematic review and meta-analysis. European Radiology. 2022 2022/05/01;32(5):2921-9. DOI: 10.1007/s00330-021-08438-z
- Lebret T, Paoletti X, Pignot G, et al. Artificial intelligence to improve cytology performance in urothelial carcinoma diagnosis: results from validation phase of the French, multicenter, prospective VISIOCYT1 trial. World Journal of Urology. 2023 2023/09/01;41(9):2381-8. DOI: 10.1007/s00345-023-04519-4
- Castellana R, Fanni SC, Roncella C, et al. Radiomics and deep learning models for CT pre-operative lymph node staging in pancreatic ductal adenocarcinoma: A systematic review and <em>meta</em>-analysis. European Journal of Radiology. 2024;176. DOI: 10.1016/j.ejrad.2024.111510
- Panthier F, Melchionna A, Crawford-Smith H, et al. Can Artificial Intelligence Accurately Detect Urinary Stones? A Systematic Review. Journal of Endourology. 2024 2024/08/01;38(8):725-40. DOI: 10.1089/end.2023.0717
- Chavoshi M, Zamani S, Mirshahvalad SA. Diagnostic performance of deep learning models versus radiologists in COVID-19 pneumonia: A systematic review and meta-analysis. Clinical Imaging. 2024;107. DOI: 10.1016/j.clinimag.2024.110092
- Wang M, Liu Z, Ma L. Application of artificial intelligence in ultrasound imaging for predicting lymph node metastasis in breast cancer: A meta-analysis. Clinical Imaging. 2024;106. DOI: 10.1016/j.clinimag.2023.110048
- Li H, Zhao J, Jiang Z. Deep learning-based computer-aided detection of ultrasound in breast cancer diagnosis: A systematic review and meta-analysis. Clinical Radiology. 2024;79(11):e1403-e13. DOI: 10.1016/j.crad.2024.08.002
- Lee HW, Jin KN, Oh S, et al. Artificial Intelligence Solution for Chest Radiographs in Respiratory Outpatient Clinics: Multicenter Prospective Randomized Clinical Trial. Annals of the American Thoracic Society. 2022 2023/05/01;20(5):660-7. DOI: 10.1513/AnnalsATS.202206-481OC
- Quanyang W, Yao H, Sicong W, et al. Artificial intelligence in lung cancer screening: Detection, classification, prediction, and prognosis. Cancer Medicine. 2024 2024/04/01;13(7):e7140. DOI: https://doi.org/10.1002/cam4.7140
- Soffer S, Klang E, Shimon O, et al. Deep learning for pulmonary embolism detection on computed tomography pulmonary angiogram: a systematic review and meta-analysis. Scientific Reports. 2021 2021/08/04;11(1):15814. DOI: 10.1038/s41598-021-95249-3
- Sugibayashi T, Walston SL, Matsumoto T, et al. Deep learning for pneumothorax diagnosis: a systematic review and meta-analysis. Eur Respir Rev. 2023 Jun 30;32(168). DOI: 10.1183/16000617.0259-2022
- Miller RJH, Bednarski BP, Pieszko K, et al. Clinical phenotypes among patients with normal cardiac perfusion using unsupervised learning: a retrospective observational study. eBioMedicine. 2024;99. DOI: 10.1016/j.ebiom.2023.104930
- Spielvogel CP, Haberl D, Mascherbauer K, et al. Diagnosis and prognosis of abnormal cardiac scintigraphy uptake suggestive of cardiac amyloidosis using artificial intelligence: a retrospective, international, multicentre, cross-tracer development and validation study. The Lancet Digital Health. 2024;6(4):e251-e60. DOI: 10.1016/S2589-7500(23)00265-0
- Muzammil MA, Javid S, Afridi AK, et al. Artificial intelligence-enhanced electrocardiography for accurate diagnosis and management of cardiovascular diseases. Journal of Electrocardiology. 2024 2024/03/01/;83:30-40. DOI: https://doi.org/10.1016/j.jelectrocard.2024.01.006
- Tu L, Deng Y, Chen Y, et al. Accuracy of deep learning in the differential diagnosis of coronary artery stenosis: a systematic review and meta-analysis. BMC Med Imaging. 2024 Sep 16;24(1):243. DOI: 10.1186/s12880-024-01403-4
- Wu Y, Xia S, Liang Z, et al. Artificial intelligence in COPD CT images: identification, staging, and quantitation. Respiratory Research. 2024 2024/08/22;25(1):319. DOI: 10.1186/s12931-024-02913-z
- Khan LA, Shaikh FH, Khan MS, et al. Artificial intelligence-enhanced electrocardiogram for the diagnosis of cardiac amyloidosis: A systemic review and meta-analysis. Current Problems in Cardiology. 2024 2024/12/01/;49(12):102860. DOI: https://doi.org/10.1016/j.cpcardiol.2024.102860
- Łajczak PM, Jóźwik K. Artificial intelligence and myocarditis—a systematic review of current applications. Heart Failure Reviews. 2024 2024/11/01;29(6):1217-34. DOI: 10.1007/s10741-024-10431-9
- Popat A, Saini B, Patel M, et al. Diagnostic Accuracy of AI Algorithms in Aortic Stenosis Screening: A Systematic Review and Meta-Analysis. Clin Med Res. 2024 Sep;22(3):145-55. DOI: 10.3121/cmr.2024.1934
- Shakeel CS, Khan SJ. Machine learning (ML) techniques as effective methods for evaluating hair and skin assessments: A systematic review. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine. 2023 2024/02/01;238(2):132-48. DOI: 10.1177/09544119231216290
- Taha A, Saad B, Taha-Mehlitz S, et al. Analysis of artificial intelligence in thyroid diagnostics and surgery: A scoping review. The American Journal of Surgery. 2024;229:57-64. DOI: 10.1016/j.amjsurg.2023.11.019
- Sant VR, Radhachandran A, Ivezic V, et al. From Bench-to-Bedside: How Artificial Intelligence is Changing Thyroid Nodule Diagnostics, a Systematic Review. The Journal of Clinical Endocrinology & Metabolism. 2024;109(7):1684-93. DOI: 10.1210/clinem/dgae277
- Rokhshad R, Salehi SN, Yavari A, et al. Deep learning for diagnosis of head and neck cancers through radiographic data: a systematic review and meta-analysis. Oral Radiol. 2024 Jan;40(1):1-20. DOI: 10.1007/s11282-023-00715-5
- Maniar KM, Lassarén P, Rana A, et al. Traditional Machine Learning Methods versus Deep Learning for Meningioma Classification, Grading, Outcome Prediction, and Segmentation: A Systematic Review and Meta-Analysis. World Neurosurgery. 2023 2023/11/01/;179:e119-e34. DOI: https://doi.org/10.1016/j.wneu.2023.08.023
- Xu J, Xu H-L, Cao Y-N, et al. The performance of deep learning on thyroid nodule imaging predicts thyroid cancer: A systematic review and meta-analysis of epidemiological studies with independent external test sets. Diabetes & Metabolic Syndrome: Clinical Research & Reviews. 2023 2023/11/01/;17(11):102891. DOI: https://doi.org/10.1016/j.dsx.2023.102891
- Liu F, Han F, Lu L, et al. Meta-analysis of prediction models for predicting lymph node metastasis in thyroid cancer. World Journal of Surgical Oncology. 2024 2024/10/22;22(1):278. DOI: 10.1186/s12957-024-03566-4
- Maghami M, Sattari SA, Tahmasbi M, et al. Diagnostic test accuracy of machine learning algorithms for the detection intracranial hemorrhage: a systematic review and meta-analysis study. BioMedical Engineering OnLine. 2023 2023/12/04;22(1):114. DOI: 10.1186/s12938-023-01172-1
- Gu F, Wu X, Wu W, et al. Performance of deep learning in the detection of intracranial aneurysm: A systematic review and meta-analysis. European Journal of Radiology. 2022;155. DOI: 10.1016/j.ejrad.2022.110457
- Munaib D, Siddharth A, Mariusz G, et al. Detection of cerebral aneurysms using artificial intelligence: a systematic review and meta-analysis. Journal of NeuroInterventional Surgery. 2023;15(3):262. DOI: 10.1136/jnis-2022-019456
- Zhou Z, Jin Y, Ye H, et al. Classification, detection, and segmentation performance of image-based AI in intracranial aneurysm: a systematic review. BMC Medical Imaging. 2024 2024/07/02;24(1):164. DOI: 10.1186/s12880-024-01347-9
- Talaat WM, Shetty S, Al Bayatti S, et al. An artificial intelligence model for the radiographic diagnosis of osteoarthritis of the temporomandibular joint. Scientific Reports. 2023 2023/09/25;13(1):15972. DOI: 10.1038/s41598-023-43277-6
- Albano D, Galiano V, Basile M, et al. Artificial intelligence for radiographic imaging detection of caries lesions: a systematic review. BMC Oral Health. 2024 2024/02/24;24(1):274. DOI: 10.1186/s12903-024-04046-7
- Guha A, Halder S, Shinde SH, et al. How does deep learning/machine learning perform in comparison to radiologists in distinguishing glioblastomas (or grade IV astrocytomas) from primary CNS lymphomas?: a meta-analysis and systematic review. Clinical Radiology. 2024;79(6):460-72. DOI: 10.1016/j.crad.2024.03.007
- Ahmedt-Aristizabal D, Armin MA, Hayder Z, et al. Deep learning approaches for seizure video analysis: A review. Epilepsy & Behavior. 2024;154. DOI: 10.1016/j.yebeh.2024.109735
- Singh S, Singha B, Kumar S. Artificial intelligence in age and sex determination using maxillofacial radiographs: A systematic review. J Forensic Odontostomatol. 2024 Apr 30;42(1):30-7. DOI: 10.5281/zenodo.11088513
- Etemadifar M, Norouzi M, Alaei S-A, et al. The diagnostic performance of AI-based algorithms to discriminate between NMOSD and MS using MRI features: A systematic review and meta-analysis. Multiple Sclerosis and Related Disorders. 2024;87. DOI: 10.1016/j.msard.2024.105682
- Silva Santana L, Borges Camargo Diniz J, Mothé Glioche Gasparri L, et al. Application of Machine Learning for Classification of Brain Tumors: A Systematic Review and Meta-Analysis. World Neurosurgery. 2024 2024/06/01/;186:204-18.e2. DOI: https://doi.org/10.1016/j.wneu.2024.03.152
- Chukwujindu E, Faiz H, Ai-Douri S, et al. Role of artificial intelligence in brain tumour imaging. European Journal of Radiology. 2024;176. DOI: 10.1016/j.ejrad.2024.111509
- Santana LS, Leite M, Yoshikawa MH, et al. Evaluation of deep learning algorithms in detecting moyamoya disease: a systematic review and single-arm meta-analysis. Neurosurgical Review. 2024 2024/06/29;47(1):300. DOI: 10.1007/s10143-024-02537-3
- Pirayesh Z, Mohammad-Rahimi H, Ghasemi N, et al. Deep Learning-Based Image Classification and Segmentation on Digital Histopathology for Oral Squamous Cell Carcinoma: A Systematic Review and Meta-Analysis. Journal of Oral Pathology & Medicine. 2024;53(9):551-66. DOI: https://doi.org/10.1111/jop.13578
- Parmar UP, Surico PL, Singh RB, et al. Artificial Intelligence (AI) for Early Diagnosis of Retinal Diseases. Medicina.
- Zhou Y, Chia MA, Wagner SK, et al. A foundation model for generalizable disease detection from retinal images. Nature. 2023 2023/10/01;622(7981):156-63. DOI: 10.1038/s41586-023-06555-x
- Farabi Maleki S, Yousefi M, Afshar S, et al. Artificial Intelligence for Multiple Sclerosis Management Using Retinal Images: Pearl, Peaks, and Pitfalls. Seminars in Ophthalmology. 2024 2024/05/18;39(4):271-88. DOI: 10.1080/08820538.2023.2293030
- Vandevenne MMS, Favuzza E, Veta M, et al. Artificial intelligence for detecting keratoconus. Cochrane Database of Systematic Reviews. 2023 (11). DOI: 10.1002/14651858.CD014911.pub2
- Joseph S, Selvaraj J, Mani I, et al. Diagnostic Accuracy of Artificial Intelligence-Based Automated Diabetic Retinopathy Screening in Real-World Settings: A Systematic Review and Meta-Analysis. American Journal of Ophthalmology. 2024;263:214-30. DOI: 10.1016/j.ajo.2024.02.012
- Abramoff MD, Whitestone N, Patnaik JL, et al. Autonomous artificial intelligence increases real-world specialist clinic productivity in a cluster-randomized trial. npj Digital Medicine. 2023 2023/10/04;6(1):184. DOI: 10.1038/s41746-023-00931-7
- Hu W, Joseph S, Li R, et al. Population impact and cost-effectiveness of artificial intelligence-based diabetic retinopathy screening in people living with diabetes in Australia: a cost effectiveness analysis. eClinicalMedicine. 2024;67. DOI: 10.1016/j.eclinm.2023.102387
- Lam C, Wong YL, Tang Z, et al. Performance of Artificial Intelligence in Detecting Diabetic Macular Edema From Fundus Photography and Optical Coherence Tomography Images: A Systematic Review and Meta-analysis. Diabetes Care. 2024;47(2):304-19. DOI: 10.2337/dc23-0993
- Prashar J, Tay N. Performance of artificial intelligence for the detection of pathological myopia from colour fundus images: a systematic review and meta-analysis. Eye (Lond). 2024 Feb;38(2):303-14. DOI: 10.1038/s41433-023-02680-z
- Vilela MAP, Arrigo A, Parodi MB, et al. Smartphone Eye Examination: Artificial Intelligence and Telemedicine. Telemedicine and e-Health. 2023 2024/02/01;30(2):341-53. DOI: 10.1089/tmj.2023.0041
- Olyntho MACJ, Jorge CAC, Castanha EB, et al. Artificial Intelligence in Anterior Chamber Evaluation: A Systematic Review and Meta-Analysis. Journal of Glaucoma. 2024;33(9):658-64. DOI: 10.1097/ijg.0000000000002428
- Tsai ASH, Yip M, Song A, et al. Implementation of Artificial Intelligence in Retinopathy of Prematurity Care: Challenges and Opportunities. International Ophthalmology Clinics. 2024;64(4).
- Eidex Z, Ding Y, Wang J, et al. Deep learning in MRI-guided radiation therapy: A systematic review. Journal of Applied Clinical Medical Physics. 2024 2024/02/01;25(2):e14155. DOI: https://doi.org/10.1002/acm2.14155
- Dai X, Zhao B, Zang J, et al. Diagnostic Performance of Radiomics and Deep Learning to Identify Benign and Malignant Soft Tissue Tumors: A Systematic Review and Meta-analysis. Academic Radiology. 2024;31(10):3956-67. DOI: 10.1016/j.acra.2024.03.033
- Wang T-W, Hsu M-S, Lee W-K, et al. Brain metastasis tumor segmentation and detection using deep learning algorithms: A systematic review and meta-analysis. Radiotherapy and Oncology. 2024;190. DOI: 10.1016/j.radonc.2023.110007
- Santomartino SM, Kung J, Yi PH. Systematic review of artificial intelligence development and evaluation for MRI diagnosis of knee ligament or meniscus tears. Skeletal Radiol. 2024 Mar;53(3):445-54. DOI: 10.1007/s00256-023-04416-2
- Herman H, Jaya Kumar Y, Yong Wee S, et al. A Systematic Review on Deep Learning Model in Computer-aided Diagnosis for Anterior Cruciate Ligament Injury. Current Medical Imaging. 2024;20:1-10. DOI: http://dx.doi.org/10.2174/0115734056295157240418043624
- Nowroozi A, Salehi MA, Shobeiri P, et al. Artificial intelligence diagnostic accuracy in fracture detection from plain radiographs and comparing it with clinicians: a systematic review and meta-analysis. Clinical Radiology. 2024;79(8):579-88. DOI: 10.1016/j.crad.2024.04.009
- Oeding JF, Kunze KN, Messer CJ, et al. Diagnostic Performance of Artificial Intelligence for Detection of Scaphoid and Distal Radius Fractures: A Systematic Review. Journal of Hand Surgery. 2024;49(5):411-22. DOI: 10.1016/j.jhsa.2024.01.020
- Huang J, Neill L, Wittbrodt M, et al. Generative Artificial Intelligence for Chest Radiograph Interpretation in the Emergency Department. JAMA Network Open. 2023;6(10):e2336100-e. DOI: 10.1001/jamanetworkopen.2023.36100
- Husarek J, Hess S, Razaeian S, et al. Artificial intelligence in commercial fracture detection products: a systematic review and meta-analysis of diagnostic test accuracy. Scientific Reports. 2024 2024/10/04;14(1):23053. DOI: 10.1038/s41598-024-73058-8
- Belge Bilgin G, Bilgin C, Burkett BJ, et al. Theranostics and artificial intelligence: new frontiers in personalized medicine. Theranostics. 2024;14(6):2367-78. DOI: 10.7150/thno.94788
- Zhu L, Pan J, Mou W, et al. Harnessing artificial intelligence for prostate cancer management. Cell Reports Medicine. 2024;5(4). DOI: 10.1016/j.xcrm.2024.101506
- Riaz IB, Harmon S, Chen Z, et al. Applications of Artificial Intelligence in Prostate Cancer Care: A Path to Enhanced Efficiency and Outcomes. American Society of Clinical Oncology Educational Book. 2024 2024/06/01;44(3):e438516. DOI: 10.1200/EDBK_438516
- Marletta S, Eccher A, Martelli FM, et al. Artificial intelligence–based algorithms for the diagnosis of prostate cancer: A systematic review. American Journal of Clinical Pathology. 2024;161(6):526-34. DOI: 10.1093/ajcp/aqad182
- Fassia M-K, Balasubramanian A, Woo S, et al. Deep Learning Prostate MRI Segmentation Accuracy and Robustness: A Systematic Review. Radiology: Artificial Intelligence. 2024 2024/07/01;6(4):e230138. DOI: 10.1148/ryai.230138
- Tian F, Liu D, Wei N, et al. Prediction of tumor origin in cancers of unknown primary origin with cytology-based deep learning. Nature Medicine. 2024 2024/04/16. DOI: 10.1038/s41591-024-02915-w
- He Y, Lin J, Zhu S, et al. Deep learning in the radiologic diagnosis of osteoporosis: a literature review. Journal of International Medical Research. 2024 2024/04/01;52(4):03000605241244754. DOI: 10.1177/03000605241244754
- Yamamoto N, Shiroshita A, Kimura R, et al. Diagnostic accuracy of chest X-ray and CT using artificial intelligence for osteoporosis: systematic review and meta-analysis. Journal of Bone and Mineral Metabolism. 2024 2024/09/01;42(5):483-91. DOI: 10.1007/s00774-024-01532-4
- Mohammadi S, Salehi MA, Jahanshahi A, et al. Artificial intelligence in osteoarthritis detection: A systematic review and meta-analysis. Osteoarthritis and Cartilage. 2024;32(3):241-53. DOI: 10.1016/j.joca.2023.09.011
- Lyakhova UA, Lyakhov PA. Systematic review of approaches to detection and classification of skin cancer using artificial intelligence: Development and prospects. Computers in Biology and Medicine. 2024 2024/08/01/;178:108742. DOI: https://doi.org/10.1016/j.compbiomed.2024.108742
- Canning K. AI Can Flag Skin Cancer With Near-Perfect Accuracy. Newark, NJ: Medscape News; 2023 [cited 27 Nov 2023]. Available from: https://www.medscape.com/viewarticle/997581
- Ye Z, Zhang D, Zhao Y, et al. Deep learning algorithms for melanoma detection using dermoscopic images: A systematic review and meta-analysis. Artificial Intelligence in Medicine. 2024 2024/09/01/;155:102934. DOI: https://doi.org/10.1016/j.artmed.2024.102934
- Mirza FN, Haq Z, Abdi P, et al. Artificial Intelligence for Mohs and Dermatologic Surgery: A Systematic Review and Meta-Analysis. Dermatologic Surgery. 2024;50(9).
- Bai A, Si M, Xue P, et al. Artificial intelligence performance in detecting lymphoma from medical imaging: a systematic review and meta-analysis. BMC Med Inform Decis Mak. 2024 Jan 8;24(1):13. DOI: 10.1186/s12911-023-02397-9
- Adams LC, Bressem KK, Ziegeler K, et al. Artificial intelligence to analyze magnetic resonance imaging in rheumatology. Joint Bone Spine. 2024 2024/05/01/;91(3):105651. DOI: https://doi.org/10.1016/j.jbspin.2023.105651
- Park KW, Mirian MS, McKeown MJ. Artificial intelligence-based video monitoring of movement disorders in the elderly: a review on current and future landscapes. Singapore Medical Journal. 2024;65(3).
- Tang W, van Ooijen PMA, Sival DA, et al. Automatic two-dimensional & three-dimensional video analysis with deep learning for movement disorders: A systematic review. Artificial Intelligence in Medicine. 2024 2024/10/01/;156:102952. DOI: https://doi.org/10.1016/j.artmed.2024.102952
- Franco A, Russo M, Amboni M, et al. The Role of Deep Learning and Gait Analysis in Parkinson’s Disease: A Systematic Review. Sensors. 2024;24(18):5957.
- Widaatalla Y, Wolswijk T, Adan F, et al. The application of artificial intelligence in the detection of basal cell carcinoma: A systematic review. Journal of the European Academy of Dermatology and Venereology. 2023 2023/06/01;37(6):1160-7. DOI: https://doi.org/10.1111/jdv.18963
- Menzies SW, Sinz C, Menzies M, et al. Comparison of humans versus mobile phone-powered artificial intelligence for the diagnosis and management of pigmented skin cancer in secondary care: a multicentre, prospective, diagnostic, clinical trial. The Lancet Digital Health. 2023;5(10):e679-e91. DOI: 10.1016/S2589-7500(23)00130-9
- National Institute for Health and Care Excellence (NICE). Artificial intelligence technologies to speed up contouring in radiotherapy treatment planning. London: NICE; 2023 [cited 23 Oct 2023]. Available from: https://www.nice.org.uk/news/articles/artificial-intelligence-to-speed-up-contouring-in-radiotherapy-treatment-planning
- Warner-Smith M, Ren K, Mistry C, et al. Protocol for evaluating the fitness for purpose of an artificial intelligence product for radiology reporting in the BreastScreen New South Wales breast cancer screening programme. BMJ Open. 2024;14(5):e082350. DOI: 10.1136/bmjopen-2023-082350
- Sydney Local Health District (SLHD). District trials wound care app in an Australian first. Sydney: SLHD; 2020 [cited 23 Oct 2023]. Available from: https://www.slhd.nsw.gov.au/sydneyconnect/story-District-trials-wound-care-app-in-an-Australian-first.html
- Myska V, Genzor S, Mezina A, et al. Artificial-Intelligence-Driven Algorithms for Predicting Response to Corticosteroid Treatment in Patients with Post-Acute COVID-19. Diagnostics (Basel). 2023 May 16;13(10). DOI: 10.3390/diagnostics13101755
- Hong S, Zhao Q. Expanding electrocardiogram abilities for postoperative mortality prediction with deep learning. The Lancet Digital Health. DOI: 10.1016/S2589-7500(23)00230-3
- Harris S. AI Advances Individualised Prostate Cancer Treatment. Newark, NJ: Medscape News; 2023 [cited 27 Nov 2023]. Available from: https://www.medscape.co.uk/viewarticle/ai-advance-individualised-prostate-cancer-treatment-2023a1000qaa
- Lin G, Wang X, Ye H, et al. Radiomic Models Predict Tumor Microenvironment Using Artificial Intelligence—the Novel Biomarkers in Breast Cancer Immune Microenvironment. Technology in Cancer Research & Treatment. 2023 2023/01/01;22:15330338231218227. DOI: 10.1177/15330338231218227
- Shoop-Worrall SJW, Lawson-Tovey S, Wedderburn LR, et al. Towards stratified treatment of JIA: machine learning identifies subtypes in response to methotrexate from four UK cohorts. eBioMedicine. 2024;100. DOI: 10.1016/j.ebiom.2023.104946
- Zhang F, Zhang F, Li L, et al. Clinical utilization of artificial intelligence in predicting therapeutic efficacy in pulmonary tuberculosis. Journal of Infection and Public Health. 2024 2024/04/01/;17(4):632-41. DOI: https://doi.org/10.1016/j.jiph.2024.02.012
- Unger M, Kather JN. Deep learning in cancer genomics and histopathology. Genome Medicine. 2024 2024/03/27;16(1):44. DOI: 10.1186/s13073-024-01315-6
- Feuerriegel S, Frauen D, Melnychuk V, et al. Causal machine learning for predicting treatment outcomes. Nature Medicine. 2024 2024/04/01;30(4):958-68. DOI: 10.1038/s41591-024-02902-1
- Habibi MA, Rashidi F, Habibzadeh A, et al. Prediction of the treatment response and local failure of patients with brain metastasis treated with stereotactic radiosurgery using machine learning: A systematic review and meta-analysis. Neurosurgical Review. 2024 2024/04/30;47(1):199. DOI: 10.1007/s10143-024-02391-3
- Li J, Dan K, Ai J. Machine learning in the prediction of immunotherapy response and prognosis of melanoma: a systematic review and meta-analysis. Frontiers in Immunology. 2024 2024-May-21;15. DOI: 10.3389/fimmu.2024.1281940
- Sohrabei S, Moghaddasi H, Hosseini A, et al. Investigating the effects of artificial intelligence on the personalization of breast cancer management: a systematic study. BMC Cancer. 2024 2024/07/18;24(1):852. DOI: 10.1186/s12885-024-12575-1
- Wang J, Tozzi F, Ashraf Ganjouei A, et al. Machine learning improves prediction of postoperative outcomes after gastrointestinal surgery: a systematic review and meta-analysis. Journal of Gastrointestinal Surgery. 2024 2024/06/01/;28(6):956-65. DOI: https://doi.org/10.1016/j.gassur.2024.03.006
- Kim J, Oh I, Lee YN, et al. Predicting the severity of postoperative scars using artificial intelligence based on images and clinical data. Scientific Reports. 2023 2023/08/18;13(1):13448. DOI: 10.1038/s41598-023-40395-z
- World Economic Forum. Scaling smart solutions with AI in health. Geneva: World Economic Forum; 2023 [cited 17 Jul 2023]. Available from: https://www3.weforum.org/docs/WEF_Scaling_Smart_Solutions_with_AI_in_Health_Unlocking_Impact_on_High_Potential_Use_Cases.pdf
- Webster P. Six ways large language models are changing healthcare. Nature Medicine. 2023 2023/11/30. DOI: 10.1038/s41591-023-02700-1
- Rippon MG, Fleming L, Chen T, et al. Artificial intelligence in wound care: diagnosis, assessment and treatment of hard-to-heal wounds: a narrative review. Journal of Wound Care. 2024;33(4):229-42. DOI: 10.12968/jowc.2024.33.4.229
- Wang T-W, Hong J-S, Huang J-W, et al. Systematic review and meta-analysis of deep learning applications in computed tomography lung cancer segmentation. Radiotherapy and Oncology. 2024 2024/08/01/;197:110344. DOI: https://doi.org/10.1016/j.radonc.2024.110344
- Saitta S, Sturla F, Gorla R, et al. A CT-based deep learning system for automatic assessment of aortic root morphology for TAVI planning. Computers in Biology and Medicine. 2023 2023/09/01/;163:107147. DOI: https://doi.org/10.1016/j.compbiomed.2023.107147
- Senior K. NHS embraces AI-assisted radiotherapy technology. The Lancet Oncology. 2023;July 20. DOI: 10.1016/S1470-2045(23)00353-4
- Varghese C, Harrison EM, O’Grady G, et al. Artificial intelligence in surgery. Nature Medicine. 2024 2024/05/01;30(5):1257-68. DOI: 10.1038/s41591-024-02970-3
- Longo UG, De Salvatore S, Valente F, et al. Artificial intelligence in total and unicompartmental knee arthroplasty. BMC Musculoskeletal Disorders. 2024 2024/07/22;25(1):571. DOI: 10.1186/s12891-024-07516-9
- Vermeulen C, Pagès-Gallego M, Kester L, et al. Ultra-fast deep-learned CNS tumour classification during surgery. Nature. 2023 2023/10/11. DOI: 10.1038/s41586-023-06615-2
- Mohammadi I, Firouzabadi SR, Hosseinpour M, et al. Predictive ability of hypotension prediction index and machine learning methods in intraoperative hypotension: a systematic review and meta-analysis. Journal of Translational Medicine. 2024 2024/08/05;22(1):725. DOI: 10.1186/s12967-024-05481-4
- Paul M, Andreassen S, Tacconelli E, et al. Improving empirical antibiotic treatment using TREAT, a computerized decision support system: cluster randomized trial. Journal of Antimicrobial Chemotherapy. 2006;58(6):1238-45. DOI: 10.1093/jac/dkl372
- Ardila CM, Yadalam PK, González-Arroyave D. Integrating whole genome sequencing and machine learning for predicting antimicrobial resistance in critical pathogens: a systematic review of antimicrobial susceptibility tests. PeerJ. 2024 2024/10/09;12:e18213. DOI: 10.7717/peerj.18213
- Singh B, Olds T, Brinsley J, et al. Systematic review and meta-analysis of the effectiveness of chatbots on lifestyle behaviours. npj Digital Medicine. 2023 2023/06/23;6(1):118. DOI: 10.1038/s41746-023-00856-1
- Aggarwal A, Tam CC, Wu D, et al. Artificial Intelligence-Based Chatbots for Promoting Health Behavioral Changes: Systematic Review. J Med Internet Res. 2023 Feb 24;25:e40789. DOI: 10.2196/40789
- Griffin AC, Xing Z, Khairat S, et al. Conversational Agents for Chronic Disease Self-Management: A Systematic Review. AMIA Annu Symp Proc. 2020;2020:504-13.
- Nayak A, Vakili S, Nayak K, et al. Use of Voice-Based Conversational Artificial Intelligence for Basal Insulin Prescription Management Among Patients With Type 2 Diabetes: A Randomized Clinical Trial. JAMA Network Open. 2023;6(12):e2340232-e. DOI: 10.1001/jamanetworkopen.2023.40232
- Asan O, Choi E, Wang X. Artificial Intelligence–Based Consumer Health Informatics Application: Scoping Review. J Med Internet Res. 2023 2023/8/30;25:e47260. DOI: 10.2196/47260
- Bin Sawad A, Narayan B, Alnefaie A, et al. A Systematic Review on Healthcare Artificial Intelligent Conversational Agents for Chronic Conditions. Sensors.
- Kurniawan MH, Handiyani H, Nuraini T, et al. A systematic review of artificial intelligence-powered (AI-powered) chatbot intervention for managing chronic illness. Annals of Medicine. 2024 2024/12/31;56(1):2302980. DOI: 10.1080/07853890.2024.2302980
- Oh YJ, Zhang J, Fang M-L, et al. A systematic review of artificial intelligence chatbots for promoting physical activity, healthy diet, and weight loss. International Journal of Behavioral Nutrition and Physical Activity. 2021 2021/12/11;18(1):160. DOI: 10.1186/s12966-021-01224-6
- Tan A. Victorian multilingual chatbot to provide Covid-19 support. London: Computer Weekly; 2022 [cited 23 Oct 2023]. Available from: https://www.computerweekly.com/news/252522985/Victorian-multilingual-chatbot-to-provide-Covid-19-support
- Business Wire. Ontrak Health Will Bring MyndYou’s AI-Powered, Active Listening Virtual Care Assistant to Its Behavioral Health Members. Yahoo! Finance; 2023 [cited 23 Oct 2023]. Available from: https://www.businesswire.com/news/home/20230328005387/en/Ontrak-Health-Will-Bring-MyndYou%E2%80%99s-AI-Powered-Active-Listening-Virtual-Care-Assistant-to-Its-Behavioral-Health-Members?utm_campaign=shareaholic&utm_medium=copy_link&utm_source=bookmark
- Teshale AB, Htun HL, Vered M, et al. A Systematic Review of Artificial Intelligence Models for Time-to-Event Outcome Applied in Cardiovascular Disease Risk Prediction. Journal of Medical Systems. 2024 2024/07/19;48(1):68. DOI: 10.1007/s10916-024-02087-7
- Sun GK, Ambrosy AP. Applying Natural Language Processing to Electronic Health Record Data—From Text to Triage. JAMA Network Open. 2024;7(11):e2443934-e. DOI: 10.1001/jamanetworkopen.2024.43934
- Gosak L, Martinović K, Lorber M, et al. Artificial intelligence based prediction models for individuals at risk of multiple diabetic complications: A systematic review of the literature. Journal of Nursing Management. 2022 2022/11/01;30(8):3765-76. DOI: https://doi.org/10.1111/jonm.13894
- Brown Z, Bergman D, Holt L, et al. Augmenting a Transitional Care Model With Artificial Intelligence Decreased Readmissions. Journal of the American Medical Directors Association. 2023;24(7):958-63. DOI: 10.1016/j.jamda.2023.03.005
- Yu M-Y, Son Y-J. Machine learning–based 30-day readmission prediction models for patients with heart failure: a systematic review. European Journal of Cardiovascular Nursing. 2024;23(7):711-9. DOI: 10.1093/eurjcn/zvae031
- Yi J, Wang L, Song J, et al. Development of a machine learning-based model for predicting individual responses to antihypertensive treatments. Nutrition, Metabolism and Cardiovascular Diseases. 2024 2024/07/01/;34(7):1660-9. DOI: https://doi.org/10.1016/j.numecd.2024.02.014
- Sujith AVLN, Sajja GS, Mahalakshmi V, et al. Systematic review of smart health monitoring using deep learning and Artificial intelligence. Neuroscience Informatics. 2022 2022/09/01/;2(3):100028. DOI: https://doi.org/10.1016/j.neuri.2021.100028
- Eghbali-Zarch M, Masoud S. Application of machine learning in affordable and accessible insulin management for type 1 and 2 diabetes: A comprehensive review. Artificial Intelligence in Medicine. 2024 2024/05/01/;151:102868. DOI: https://doi.org/10.1016/j.artmed.2024.102868
- Chan PZ, Jin E, Jansson M, et al. AI-Based Noninvasive Blood Glucose Monitoring: Scoping Review. J Med Internet Res. 2024 2024/11/19;26:e58892. DOI: 10.2196/58892
- Shaik T, Tao X, Higgins N, et al. Remote patient monitoring using artificial intelligence: Current state, applications, and challenges. WIREs Data Mining and Knowledge Discovery. 2023 2023/03/01;13(2):e1485. DOI: https://doi.org/10.1002/widm.1485
- Capdevila X, Macaire P, Bernard N, et al. Remote transmission monitoring for postoperative perineural analgesia after major orthopedic surgery: A multicenter, randomized, parallel-group, controlled trial. J Clin Anesth. 2022 May;77:110618. DOI: 10.1016/j.jclinane.2021.110618
- NSW Government News. Using AI to enhance remote patient care. Sydney: NSW Government; 2022 [cited 23 Oct 2023]. Available from: https://www.nsw.gov.au/health/nbmlhd/news/stories/ai-enhances-remote-patient-care
- Gutierrez G, Stephenson C, Eadie J, et al. Examining the role of AI technology in online mental healthcare: opportunities, challenges, and implications, a mixed-methods review. Frontiers in Psychiatry. 2024 2024-May-07;15. DOI: 10.3389/fpsyt.2024.1356773
Living evidence tables include some links to low quality sources and an assessment of the original source has not been undertaken. Sources are monitored regularly but due to rapidly emerging information, tables may not always reflect the most current evidence. The tables are not peer reviewed, and inclusion does not imply official recommendation nor endorsement of NSW Health.
Last updated on 3 Dec 2024