

Lung & thorax basics

Justin Bowra Critical Care Ultrasound Course

Summary

- 1. Is there a pneumothorax?
- 1. Is there stuff in the pleural space?
- 1. Is the lung wet/ dry/ chunky?
- 1. What's the overall pattern?

Why scan the lung & thorax?

Pleural pathology

- Air: PTX
- Fluid
- Pleural thickening
- Malignancy: mesothelioma

Lung pathology

- Fluid in lung eg APO
- Consolidated lung eg pneumonia / contusion

Procedural guidance

Why bother?

- More accurate than CXR:
 - PTX (>95% v 50%)
 - Pleural fluid (20ml v 200ml)
 - APO sens 97%, spec 94%, acc 95%
 - PE?? Sens 74% ... 81% if add DVT
- It's also
 - Faster (2 min versus 19 min)
 - Safer
 - Repeatable

Normal lung ≠ disease processes*

Normal lung

Air in lung reflects the sound
You don't really see normal lung at all
Pleural line = sliding 'twinkling curtain'
Sparkle = scatter from air
Bright horizontal lines = reverberation

Pathology (that reaches the pleura)

- PTX: air but no sliding
- Pleural fluid: 'gap' between chest wall & lung
- Pleural disease: thickened / irregular
- Wet / fibrosed lung: bright vertical lines
- Consolidated / infarcted lung: hypoechoic 'chunks'

Normal dry lung

Only air

Scatter

May see horizontal static lines (reverberation artefacts from the pleura) = A lines

Lung sliding

Ribs / costal cartilages

Ribs / costal cartilages

Pleural line

Pleural line

Real

Not real

Shadowing

Scatter

TOSHIBA	EM76:EMERGENCY76 Liverpool Hospital Emergency	ABDOMEN	02/07/2005 15:54:10
	- 4Bm	1	P10
	RCHEST	and a second	4.
	0+	and the second	32fp
			DR7
		Contraction of the second	e 8
	a shirt and a state of the		10
	A	and the	
		9400730	N
			No.
		E satelle	~
10			
	Sales and the second	a constant	
	and the second second		6.4
	5+		
			1
			7

A	İ	n	e	S

A lines & pleural sliding

Slightly wetter (but still normal) lung

Lung sliding

Some 'B lines'

Reverberation artifact Microbubbles of air/ water in interlobular septa

Vertical & move with resps = thick / bright / vertical lines which reach to edge of screen & obliterate A lines

4 questions

- 1. Is there a pneumothorax?
- 1. Is there stuff in the pleural space?
- 1. Is the lung wet/ dry/ chunky?
- 1. What's the overall pattern?

Is there a pneumothorax?

Normal dry lung Only air is present (scatter)

Pneumothorax (PTX)

Only air is present (scatter)

Normal dry lung

- Only air is present (scatter)

Pneumothorax (PTX)

- Only air is present (scatter)
- You may see A lines You may see A lines

Normal dry lung

- Only air is present (scatter)

Pneumothorax (PTX)

- Only air is present (scatter)
- You may see A lines You may see A lines
- And the occasional B line You will NOT see B lines

Normal dry lung

- Only air is present (scatter)
- You may see A lines
- You will also see lung sliding

Pneumothorax (PTX)

- Only air is present (scatter)
- You may see A lines
- And the occasional B line You will NOT see B lines
 - You will NOT see lung sliding

Pneumothorax

It can be tricky

Top tip: compare sides

Pneumothorax

The explanation

Figure 5. Ultrasound waves are reflected back at the visceral pleura-lung interface – pleural sliding can be seen (a). In the presence of a pneumothorax, ultrasound waves are reflected at the parietal pleura – air interface and no sliding is seen (b).

Caveat:

Lots of other things can prevent lung sliding

COPD Bullae Apices Failure to ventilate eg R main stem intubation (L lung doesn't move) Eg pain (chest splinting)

Pneumonia & ARDS (pleura gummed up)
Top tip.

Be a doctor. Clinical context can usually fill in the gaps.

Tip: M-mode can help

Sliding = seashore sign No sliding = stratosphere sign But beware 'false seashore' with chest wall movement!

Stratosphere sign

M-mode = motion mode If something isn't moving, it's a straight line

Normal: seashore sign

PTX: stratosphere sign

1

PTX: lung point sign

Normal: lung pulse sign

Just to recap: Normal dry lung VS PTX

Normal dry lung

- Only air is present (scatter)
- You may see A lines
- You will also see lung sliding
- You should see a lung pulse

Pneumothorax (PTX)

- Only air is present (scatter)
- You may see A lines
- And the occasional B line You will NOT see B lines
 - You will NOT see lung sliding
 - You will NOT see a lung pulse

Is there stuff in the pleural space?

Pleural fluid

Pleural fluid

- A 'gap' between chest wall & pleura
- Dependent regions
- Appearance:
 - Black / anechoic: fresh blood, transudate
 - echogenic / stuff: clotted blood, exudate
- >20ml
- Sensitivity >97%, specificity 99-100% (Sisley et al, J Trauma 1998)

Pleural fluid: large

Pleural fluid: small

Pleural fluid: loculated

PLEURAL FLUID

COLLAPSED LUNG

AIR BRONCHOGRAM

R

DIAPHRAGM

Is the lung wet / dry / chunky?

Wet lung

Wet lung

Many B lines (3 or more per field)

Previously called 'rockets' or 'comets'

Bases = OK (25% of 'normal people')

Cardiogenic = symmetrical / sliding preserved

Inflammatory / ARDS = asymmetrical / reduced sliding

Caveat: Fibrosed lung

- Lung fibrosis also generates B-lines
- There are subtle differences
- But even experienced practitioners can be fooled

Compare the lung sliding

Cardiogenic oedema

Oedema in pneumonia

Chunky lung

Consolidation

a.k.a. Lichtenstein's C profile

Alveolar consolidation

- If you can see lung tissue, it ain't normal!
- It ain't aerated
 - Collapse
 - Consolidation
 - Atelectasis
 - Contusion
 - Infarction (PE)

Alveolar consolidation

Alveolar consolidation

- Can you differentiate collapse, consolidation, tumour etc?
- Clinicians should stick to clinical features
- But for advanced scanners:
- Air bronchograms, normal Doppler flow = consolidation
- No flow on Doppler = infarction (e.g. PE)
- Bizarre flow = neovascularisation = malignancy

Finally... what is the overall pattern?

Pattern

Wet all over = cardiogenic / fluid overload

Just 1 lung = pneumonia

Just in 1 spot = inflammation / infection

Patchy = ARDS / ALI

Technique for scanning lungs

Patient position

No need to sit patient up (eg trauma)

In fact, accuracy for PTX is improved if lying flat... just harder to get round the back for pleural fluid

Air rises

Fluid sinks

Probe

Linear = best for close-up detail eg small PTX, but poor for wet lung & no anatomical info

Sector (cardiac) probe: poor image quality but gets between the ribs

Curved probe = good compromise

Tiny pneumothorax (lung point)

Wet lung

Preset

There are commercial 'lung' settings
But abdo / FAST preset suffices
The key: turn off filters

Multibeam / compounding
Tissue harmonics

Why? You are looking for artifacts

Cardiogenic oedema with THI & MB on.

Cardiogenic oedema with THI & MB off.

Depth

- For fine detail: close up
- E.g. Microconsolidation, pleural disease
- For everything else: add depth eg 15cm
- E.g. wet lung (do the 'B lines' reach to the end of the screen?)
- Anatomical landmarks (e.g. diaphragm)

Probe position

Up to personal preference
Long axis of patient (right angles to the ribs) keeps the landmarks (rib shadows) in view

Look between the ribs

Where will I scan?

Depends on clinical context

The basic principles

Air rises → scan highest point of the chest for PTX

Fluid sinks -> scan lowest point for pleural fluid

Patchy diseases? (e.g. pneumonia, ARDS Cardiogenic versus inflammatory oedema?
→ scan as much lung as possible (at least each lobe)

Let's keep it simple

Upper anterior: that's where you'll find PTX Around the back: that's where you'll find pleural fluid

Tip: watch out for the abdomen!

If you scan the liver / spleen & think you're still above the diaphragm, it will resemble consolidation. ESP if you are using linear probe

Putting it all together

Normal lungs

Dry(-ish) air Scatter, often with A-lines Up to 2 B lines per window are OK No chunkiness No pleural fluid

Pneumothorax

Very dry air Usually see A-lines No sliding No B lines No lung pulse See a lung point unless lung is completely collapsed

Acute cardiogenic pulmonary oedema (APO)

B profile = Plenty of B lines in all windows lung sliding preserved Often see effusions

ARDS or pneumonia

Lungs might look wet
lung rockets in all windows
lung sliding reduced / absent
And pleural line may be irregular

Lungs might look patchy (wet / dry areas)

Lungs might look chunky

Asthma / COPD

Lungs usually look dry.

Pulmonary embolus

Lungs usually look dry.

Sometimes you see chunks.

Sticking needles in thorax

Chest drains/ thoracocentesis

- Same rationale as central line placement
- Ensures you don't stick ICC in the liver
- Tricks:
 - Get patient to take maximal inspiration & expiration
 - Scan in 2 planes
 - Scan in same position you'll insert ICC
 - NB Use real time US??

Confused? Read this.

Daniel A Lichtenstein

Whole Body Ultrasonography in the Critically II

🖄 September

Or this.

Intensive Care Med DOI 10.1007/s00134-012-2513-4

CONFERENCE REPORTS AND EXPERT PANEL

Giovanni Volpicelli Mahmoud Elbarbary Michael Blaivas Daniel A. Lichtenstein Gebhard Mathis Andrew W. Kirkpatrick Lawrence Melniker Luna Gargani Vicki E. Noble **Gabriele Via** Anthony Dean James W. Tsung Gino Soldati **Roberto Copetti Belaid Bouhemad** Angelika Reissig Fustachio Agricola

International evidence-based recommendations for point-of-care lung ultrasound

Let's wrap this up

Lung US basics

Curved probe / FAST preset At right angles to the ribs 4 simple Qs...

The 4 questions

- 1. Is there a pneumothorax?
- 1. Is there stuff in the pleural space?
- 1. Is the lung wet/ dry/ chunky?
- 1. What's the overall pattern?

Any questions?

Thanks to:

Dr Paul Atkinson Dr Juan Chiang Dr Maggie Chung Dr Bishr Faheem Dr Daniel Lichtenstein

References

- Bowra J, McLaughlin R. Emergency Ultrasound Made Easy. Churchill Livingstone (2nd ed)
- Lichtenstein. Whole-body Ultrasound In The Critically III. Springer 2010
- San Critical Care Ultrasound Library http://www.sah.org.au/criticalcare-ultrasound-library
- San Critical Care Ultrasound Seminars http://www.sah.org.au/criticalcare-ultrasound-library
- Volpicelli G et al. International evidence-based recommendations for point-of-care lung ultrasound. Intens care med 2012.