

Partnering | Advocacy | Coordination

Are there differences in patient characteristics and riskadjusted outcomes related to ICU admission source?

AUTHORS: Badge H¹, Nguyen N^{1,2}, Fletcher J³, Kelly, S., Argall N, Min J⁴, van Raay C, Williamson J¹, Plummer J¹

BACKGROUND

RESULTS

- The transfer of critically ill patients between hospitals has been associated with increased risk of mortality, adverse events, and costs. (Flabouris, 2008, Hills et al, 2007, CEC, 2013).
- This often involves moving patients far from their home and social networks (Durairaj, 2003; Parmentier et al 2013).
- Reasons for transfer are complex, and include the patient's requirements for higher level, specialised or more invasive care, or lack of local ICU capacity.
- Characteristics described for 603,312 patients: Mean age was 58.4 years (SD=19.4, range = 16-110). 56.7% patients were male and 41204 (8.4%) patients identified as Indigenous.
- Patients transferred from an 'other hospital' (ANZICS, 2014) were predominately admitted to tertiary hospitals (64%), with 26% admitted to metropolitan hospitals and 4.5% admitted to rural / regional hospitals. 83.6% of patients transferred from an 'other hospital ICU' were admitted to a tertiary hospital, with 12.1% admitted to metropolitan units and 4.2% to rural/regional hospital.
- Australian New Zealand Risk of Death (ANZROD) estimates by ICU Admission source suggests the majority of patients are of a low acuity, (See Figure 3). Differences in median ANZROD estimates were significant across all ICU admission sources (x2(df=4)=598.046, P<.0001).

Table 1: Results by ICU Admission Source and for whole sample

	Whole	Within same facility			Outside facility		
Description	Sample	OT/ recovery	ED	Ward	Other hospital	Other hospital ICU	
Numbers	100%	21%	44%	23%	10%	1.1%	
Median	.054703	.034407	.040664	.128545	.055993	.096334	
ANZROD Risk of Death*(IQR)	(0.1640)	(.0934)	(.1277)	(.2757)	(.1639)	(.9912)	F
Ventilated*	43%	53%	39%	34%	60%	72%	nate 1
ICU LOS hrs*,	52.18	46.42	47.92	64.03	65.93	114.08	o estin
Median, (IQR)	(86.83)	(77.30)	(72.07)	(99.7)	(110.77)	(197.31)	of Death 0
Died in hospital	16.0%	11.3%	14.0%	23.8%	16.0%	19.4%	0 Risk

Figure 1: Datathon Team #therightmoves Independent-Samples Kruskal-Wallis Test

- To determine whether there 1. are differences in patient characteristics and outcomes depending on ICU admission source.
- To determine whether there is 2. an increased risk of hospital mortality for those patients admitted to ICU from another hospital ICU compared with those patients admitted from other sources?

METHOD

AIMS

Australian & New Zealand Intensive Care Society (ANZICS) Datathon -Melbourne

The regression model (N=98.6%) included In-hospital mortality, ICU admission source, site ID, and ANZROD estimates (x2(132) = 152803.898, p < .0001).

Table 2: Risk of mortality for different ICU admission sources

ICU Admission Source	Odds ratio	95% CI		Sig.	
OT / recovery	0.877	0.807	0.954	0.002	
ED	0.849	0.782	0.923	<.0001	
Ward	1.004	0.924	1.091	0.921	
Other hospital	0.889	0.816	0.968	0.007	
Other hospital ICU	1				

DISCUSSION

Figure 2: Median ANZROD by ICU Admission Source

References

- ANZICS Adult Patient Database. Version 4.1 (2014). Accessed online http://www.anzics.com.au/Downloads/ANZIC S%20APD%20Dictionary%20V4.1_Basic.pdf
- Clinical Excellence Commission (2013). Clinical Focus Report from review of Root Cause Analaysis and/or incident information management system (IIMS) data: Retrieval and Inter-hospital transfer. CEC: Sydney
- Durairaj, L, Will J, Torner J, Doebbeling B. Prognostic factors for mortality following interhospital transfers to the medical intensive care unit of a tertiary referral center. Critical Care Medicine: July 2003 - Volume 31 - Issue 7 - pp 1981-1986.
- Flabouris, A., Hart G, George C. "Outcomes of patients admitted to tertiary intensive care units after interhospital transfer: comparison with patients admitted from emergency departments." Crit Care Resusc (2008), 10(2): 97-105 • Hill D, Vingilis E, Martin C, Hartford K, Speecheley K. Interhospital transfer of critically ill patients: Demographic and outcomes comparison with non-transferred intensive care unit patients. Journal of Critical Care, 22(4), 290-295. IBM Corp. Released 2011. IBM SPSS Statistics for Windows, Version 20.0. Armonk, NY: IBM Corp. Parmentier-Decrucq E, Poissy J, Favory R, Nseir S, Onimus T, Guerry MJ, Durocher A, Mathieu D. (2013). "Adverse events during" intrahospital transport of critically ill patients: incidence and risk factors." Ann Intensive Care 3: 10-10.

- De-identified ANZICS Adult Patient Database records for 1,196,089 cases for patients admitted from 2005-2015 (See Figure 1).
- Data were extracted for 603,312 cases: emergency adult public ICU admissions
- SPSS: Descriptive & exploratory analyses, binomial regression
- Our findings are consistent with previous Australasian studies demonstrating a higher risk adjusted hospital mortality and longer LOS for those patients whose admission source was an other hospital compared with to those admitted from the ED
- The persistence of this problem suggests there is a need to: - address the safety and timeliness of inter-hospital transfers
 - improve capacity of smaller ICU to reduce the need for transfer of lower acuity patients.
- Next steps: Examine change in patient needs and interventions for those admitted from one ICU to another using data linkage to examine the impact of critical care transfer networks.

www.aci.health.nsw.gov.au

Contact: Helen Badge | Research Fellow Intensive Care NSW | ACI helen.badge@health.nsw.gov.au